Influence of domain information on Latent Semantic Analysis of Hindi text
نویسندگان
چکیده
The work presented in this paper is to evaluate the performance of Latent Semantic Analysis (LSA) model in capturing word correlations within text by including domain information in the process. The performance of the model is empirically evaluated by classification of Hindi text. The accuracies of classification are compared against plain LSA. An increase of 1.25% classification accuracy is achieved when compared to plain LSA. Keywords— Dimensionality Reduction, Document Classification, Domain Information, LSA, SVD
منابع مشابه
Presenting a method for extracting structured domain-dependent information from Farsi Web pages
Extracting structured information about entities from web texts is an important task in web mining, natural language processing, and information extraction. Information extraction is useful in many applications including search engines, question-answering systems, recommender systems, machine translation, etc. An information extraction system aims to identify the entities from the text and extr...
متن کاملA Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملQuery expansion based on relevance feedback and latent semantic analysis
Web search engines are one of the most popular tools on the Internet which are widely-used by expert and novice users. Constructing an adequate query which represents the best specification of users’ information need to the search engine is an important concern of web users. Query expansion is a way to reduce this concern and increase user satisfaction. In this paper, a new method of query expa...
متن کاملBiomedical Text Mining: State-of-the-Art, Open Problems and Future Challenges
Text is a very important type of data within the biomedical domain. For example, patient records contain large amounts of text which has been entered in a non-standardized format, consequently posing a lot of challenges to processing of such data. For the clinical doctor the written text in the medical findings is still the basis for decision making – neither images nor multimedia data. However...
متن کاملSemantic Prosody: Its Knowledge and Appropriate Selection of Equivalents
In translation, choosing appropriate equivalent is essential to convey the right message from source-text to target-text, and one of the issues that may have a determinative role in appropriate equivalent choice is the semantic prosody (SP) behavior of words and the relation existing between the SP of a word and semantic senses (i.e. negativity, positivity or neutrality) of its collocations in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015